2×TransStart? FastPfu PCR SuperMix (-dye)
2×TransStart FastPfu PCR 預(yù)混液 (-dye)
| 目錄號 | 規(guī)格 | 單價 |
|---|---|---|
| AS221-01 | 1 ml | 550 |
| AS221-02 | 5×1 ml | 2340 |
產(chǎn)品詳情介紹
本產(chǎn)品包含TransStart? FastPfu DNA Polymerase、dNTPs和優(yōu)化的反應(yīng)緩沖液,濃度為2×,擴(kuò)增效率強(qiáng),擴(kuò)增速度快,具有高保真性、高特異性。DNA擴(kuò)增時,只需加入模板、引物和水,使SuperMix溶液的濃度為1×即可進(jìn)行反應(yīng)。擴(kuò)增產(chǎn)物為平端,可直接克隆于pEASY?-Blunt系列載體中。2×TransStart? FastPfu PCRSuperMix (+dye)擴(kuò)增產(chǎn)物可直接點樣電泳,如用于克隆,需純化去掉染料。其PCR產(chǎn)物不適用于聚丙烯酰胺凝膠電泳。
? 減少PCR擴(kuò)增操作時間。
? 避免因多步操作帶來的污染。
? 保真性是EasyTaq? DNA Polymerase的54倍。
? 基因組DNA片段的擴(kuò)增(≤15 kb)。
? Plasmid DNA片段擴(kuò)增(≤20 kb)。

1.Jin S, Zhu Z, Li Y, et al. Functional RNA splitting drove the evolutionary emergence of type V CRISPR-Cas systems from transposons[J]. Cell, 2025.(IF 42.50)
2.Song R, Guo P, Ren X, et al. A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer[J]. Molecular Cancer, 2023.(IF 37.30)
3.Jin S, Lin Q, Gao Q, et al. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs)[J]. Nature Protocols, 2022.(IF 17.02)
4.Wan H, Zhong X, Yang S, et al. Enhancing the Therapeutic Potential of Peptide Antibiotics Using Bacteriophage Mimicry Strategies[J]. Advanced Science, 2025.(IF 14.10)
5.Li X, Zhang S, Wang C, et al. Efficient in situ epitope tagging of rice genes by nuclease-mediated prime editing[J]. The Plant Cell, 2025.(IF 11.60)
6.Liu J, Wang Y, Fan X, et al. A Bacteriophage Protein-Driven Platform for Rapid and Precise Diagnosis of Bacterial Pathogens from Blood Samples[J]. Biosensors and Bioelectronics, 2025.(IF 10.50)
7.Meng X, Wu Q, Cao C, et al. A novel peptide encoded by circSRCAP confers resistance to enzalutamide by inhibiting the ubiquitin-dependent degradation of AR-V7 in castration-resistant prostate cancer[J]. Journal of Translational Medicine, 2025.(IF 7.50)
8.Liu Y, Sun Q, Wang Q, et al. Genome-wide identification of the UGT gene family revealing PbUGT73EC3 participating in drought stress in Phoebe bournei[J]. Plant Stress, 2025.(IF 6.90)
9.Wang Y, Wang Z, Chen Y, et al. A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii to understand the H2O2-sensing mechanism of OxyR[J]. Cell Chemical Biology, 2019.(IF 6.76)
10.Li M, Yang L, Qian W, et al. A novel rat model of Dravet syndrome recapitulates clinical hallmarks[J]. Neurobiology of Disease, 2023.(IF 6.10)
11.Fu N, Wang L, Han X, et al. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes, revealing CaM3 and CML13 participating in drought stress in Phoebe bournei[J]. International Journal of Molecular Sciences, 2023.(IF 5.60)
12.Chen K, Hu Z, Song W, et al. Diversity of O-glycosyltransferases contributes to the biosynthesis of flavonoid and triterpenoid glycosides in Glycyrrhiza uralensis[J]. ACS Synthetic Biology, 2019.(IF 5.57)
13.Feng K, Ge H, Chen H, et al. Novel exon mutation in SYCE1 gene is associated with non‐obstructive azoospermia[J]. Journal of Cellular and Molecular Medicine, 2022.(IF 5.30)




